Probing the Character of the Pygmy Dipole Resonance V. Derya^{1*}, J. Endres¹, M. N. Harakeh², D. Savran^{3,4}, H. J. Wörtche², and A. Zilges¹ ¹Institute for Nuclear Physics, University of Cologne, Germany ²KVI, Rijksuniversiteit Groningen, The Netherlands ³ExtreMe Matter Institute EMMI and Research Division, GSI, Darmstadt, Germany ⁴Frankfurt Institute for Advanced Studies FIAS, Frankfurt a.M., Germany **Nuclear Structure 2012** Argonne National Laboratory, August 13 – 17, 2012 Supported by the DFG (ZI 510/4-1 and ZI 510/4-2), by the EU under EURONS Contract No. RII3-CT-2004-506065 in the 6th framework programme, and by the Alliance Program of the Helmholtz Association (HA216/EMMI) *Member of the Bonn-Cologne Graduate School of Physics and Astronomy ## Outline - Introduction - Experimental Methods - Results - for ⁹⁴Mo - for ⁴⁸Ca - Summary ## Introduction ## Electric dipole strength in spherical atomic nuclei Two-phonon state ## Summed B(E1) Strength ## Splitting of the PDR # Real photons: Strongly fragmented E1 strength - A. Zilges et al., Phys. Lett. B 542 (2002) 43 - S. Volz et al., Nucl. Phys. A779 (2006) 1 - D. Savran et al., Phys. Rev. Lett 100 (2008) 232501 Complementary α particles: Splitting of the PDR in ¹⁴⁰Ce, ¹³⁸Ba, and ¹²⁴Sn J. Endres, E. Litvinova, *et al.*, Phys. Rev. Lett. **105** (2010) 212503 ## Two Nuclei – Two Aspects - ⁹⁴Mo - Non-magic - Near to (sub) shell closure - Spherical Effect of non-magicity? - ⁴⁸Ca - Doubly-magic - Medium-mass region Evolution of collectivity? ## **Experimental Methods** #### Reaction - $\bullet \quad (\gamma, \gamma')$ - Real-photon scattering ### Setup - Darmstadt High-Intensity Photon Setup - $E_{\gamma} = 0-10 \text{ MeV}$ - 2 HPGe detectors ## Selectivity Mainly E1 from ground state - $(\alpha, \alpha' \gamma)$ - Inelastic α-scattering with γ coincidence - Big-Bite Spectrometer at KVI Groningen - $E_{\alpha} = 136 \text{ MeV}$ - 6-7 HPGe detectors and α spectrometer - Mainly low spin from ground state - Isoscalar probe ## α-γ Coincidence Matrix - Energy spectra through projection - Selecting transitions by setting gates ## Selecting transitions – Projected γ spectra ## Results for 94Mo 10 lines in the γ spectrum gated on E_X≈E_γ α-scattering cross sections # $(\alpha,\alpha'\gamma)$ and (γ,γ') in ⁹⁴Mo # $(\alpha,\alpha'\gamma)$ and (γ,γ') in ¹⁴⁰Ce, ¹³⁸Ba, and ¹²⁴Sn - Splitting of the PDR → due to isospin character - low-energy part \rightarrow (γ,γ') and $(\alpha,\alpha'\gamma)$ - high-energy part \rightarrow (γ, γ') only # Low-Lying Dipole Strength in Lighter Nuclei - Light-mass nuclei: halo nuclei, single-particle character excitations - Medium-mass nuclei: development of a more collective dipole-excitation mode? - Dependence on N/Z ratio in the Calcium chain ## $J=1^{-}$ states in $(\alpha,\alpha'\gamma)$ and (γ,γ') - Strongest state in (γ,γ') at 7.3 MeV is missing in $(\alpha,\alpha'\gamma)$ - Strongest state in $(\alpha, \alpha' \gamma)$ at 7.6 MeV is weak in (γ, γ') ## The State(s) at 7.655 MeV - Known $J^{\pi}=3^{-}$ state at 7.651(1) MeV - Multipolarity of the observed groundstate transition: E1 or E3? Double-differential cross section d²σ/(dΩ_αdΩ_γ) and α-γ angular correlation → Multipolarity θ_{γ} : angle of γ -ray emission with respect to the α -beam (position of the 6 HPGe detectors) Ground state transitions stem from $J^{\pi}=1^{-}$ state ## Parity Assignments in ⁴⁸Ca - Parity Measurement at the HIγS facility - 7 dipole excitations were observed → The excited dipole states have negative parity # J=1 states in $(\alpha, \alpha' \gamma)$ and (γ, γ') # Summary - Extension of the systematic study in (γ,γ') and (α,α'γ) experiments by the nucleus ⁹⁴Mo - Determination of branching ratios possible - Dipole excitations in ⁴⁸Ca have been measured with three different experimental methods - Strong octupole contribution to the strongest dipole excitation by α particles excluded - Parity of the state excited by photons but not excited by α particles could be determined as negative #### **University of Cologne (Cologne, Germany)** - J. Endres, A. Hennig, J. Mayer, L. Netterdon, S. Pascu, - S. G. Pickstone, A. Sauerwein, F. Schlüter, P. Scholz, - M. Spieker, T. M. Streit, and A. Zilges #### Kernfysisch Versneller Instituut (Groningen, The Netherlands) M. N. Harakeh and H. J. Wörtche #### **ExtreMe Matter Institute (Darmstadt, Germany)** D. Savran ### Supported by: